
Themes in Science & Technology Education, 10(1), 17-29, 2017

Python source code plagiarism attacks on introductory
programming course assignments

Oscar Karnalim
oscar.karnalim@it.maranatha.edu

Faculty of Information Technology, Maranatha Christian University, Indonesia

Abstract. This paper empirically enlists Python plagiarism attacks that have been found
on Introductory Programming course assignments for undergraduate students.
According to our observation toward 400 plagiarism-suspected cases, there are 35
plagiarism attacks that have been conducted by students. It starts with comment &
whitespace modification as the most frequent attack and ends with replacing regular
instruction with API-based instruction as the least frequent one. In addition to such
primary finding, we have also found two additional findings. First, when classified
based on Faidhi & Robinson’s taxonomy, the occurrence trend of such attacks is not
proportional to increasing plagiarism level due to the nature of Python programming
language, course syllabus, and student preferences. Second, incorporated plagiarism
attacks are proportional to student experience, even though such relation is, sometimes,
mitigated by student understanding and assignment restrictions.

Keywords: source code plagiarism, plagiarism attack, introductory programming,
python

Introduction

Source code plagiarism is an act of generating a source code from another code with a slight
modification (Parker & Hamblen, 1989). Despite the fact that such activity is a trivial task for
Computer Science (CS) students (Sraka & Kaucic, 2009), detecting such illegal behavior takes
a considerable amount of time. The lecturer should check each possible source code pairs
and decide which pairs should be accused as plagiarism cases. Consequently, several
plagiarism detection systems are developed to alleviate such work (Djuric & Gasevic, 2012;
Lim et al., 2011; Rabbani & Karnalim, 2017). Using such system, the lecturer is not required
to check each possible pair manually. He/she is only required to revalidate plagiarism
suspected pairs generated by such automatic system.

Even though there are numerous plagiarism detection systems available, most of them were
only evaluated in black-box manner, which is not sufficient to draw out the characteristic of
proposed system comprehensively. To the best of our knowledge, there are only two works
which evaluated their respective system without such black-box manner (Prechelt et al.,
2002; Karnalim, 2016). Both works evaluated their proposed system by analyzing the impact
of their system toward empirically-listed plagiarism attacks. They defined which attacks
favor their system and which attacks do not. Prechelt et al. (2002) evaluated their JPlag with
plagiarism attacks listed from 647 Java source code pairs whereas Karnalim (2016) evaluated
his low-level plagiarism detection system with plagiarism attacks listed from 378 Java source
codes.

Python is a popular programming language for learning Introductory Programming due to
its simplicity (Guo, 2013). It handles most technical details implicitly, resulting simple yet
powerful syntaxes for programmer. Due to such popularity, we intend to propose a Python-
targeted plagiarism detection system for education environment. However, before

18 O. Karnalim

developing such system, we would argue that it is important to understand the
characteristic of Python plagiarism attacks beforehand. In this paper, we propose such initial
study. We plan to empirically enlist Python plagiarism attacks on Introductory
Programming course and analyze its trend from two aspects: Faidhi & Robinson’s taxonomy
(Faidhi & Robinson, 1987) and student experience. Such study is expected to provide a brief
characteristic about Python plagiarism attacks in educational environment, especially in
Introductory Programming course.

Literature review

Source code plagiarism is an emerging issue in Computer Science (CS) education, especially
in Programming course (Cosma & Joy, 2008). In such course, there are, at least, two causes
which encourage students to do plagiarism. First of all, most programming assignments are
written electronically. Such circumstance might encourage students to do plagiarism since
electronic files can be copied and modified easily in no time, without leaving a particular
trace. On the other, most programming assignments are graded automatically by a judge
program without human intervention. Such circumstance might encourage students to do
plagiarism since plagiarism checker on such judge program is usually less accurate than
human evaluator. The students could easily trick such system as long as they know how it
works.

To handle such emerging issues, there are numerous source code plagiarism detection
systems have been developed. In general, such systems can be roughly classified into two
categories which are attribute- and structure-based approach (Al-Khanjari et al., 2010).
Attribute-based approach detects plagiarism based on key properties from given source
codes whereas structure-based approach detects plagiarism based on source code ordinal
structure. However, it is important to note that both approaches are not exclusive to each
other. In some works, both approaches are merged together (Engels et al., 2007; Ohno &
Murao, 2011), resulting more comprehensive result.

Attribute-based approach uses key properties from source code, such as software metrics, to
detect plagiarism (Djuric & Gasevic, 2012; Al-Khanjari et al., 2010; Bandara & Wijayarathna,
2011). Two source codes are considered as plagiarized to each other if, and only if, both
codes share similar key properties. The similarity of given key properties itself could be
measured using various mechanisms such as information retrieval (Ramirez-de-la-Cruz et
al., 2015; Cosma & Joy, 2012), classification (Bandara & Wijayarathna, 2011), and clustering
(Jadalla & Elnagar, 2008). However, regardless of its similarity measurement, the
effectiveness of attribute-based approach is affected heavily by extracted key properties.
When such properties do not sufficiently capture the characteristic of given source code,
such approach will not generate accurate result.

Structure-based approach uses ordinal structure from source code, such as token sequence,
to detect plagiarism. Such approach usually works in twofold. Firstly, all source codes are
translated into their respective intermediate form such as lexical token sequence (Djuric &
Gasevic, 2012; Kustanto & Liem, 2009; Lim et al., 2011), compiler-based representation
(Chilowicz et al., 2009), or low-level codes (Juričić, 2011; Juricic et al., 2011; Ji et al., 2008;
Karnalim, 2016; Rabbani & Karnalim, 2017). Secondly, generated intermediate
representation would be compared in pairwise manner through string-based similarity
algorithm such as Rabin-Karp Greedy String Tiling (RKGST) (Wise, 1996), Winnowing
Algorithm (Schleimer et al., 2003), and Local Alignment (Smith & Waterman, 1981).
According to several works (Prechelt et al., 2002; Djuric & Gasevic, 2012), this approach is
more effective than attribute-based approach due to its sensitivity. The similarity of two

Python source code plagiarism attacks on introductory programming course assignment 19

source codes are not only defined by the number of similar properties (which is tokens in
this case) but also the order of given properties.

Despite the fact that there are numerous works about plagiarism detection system, to the
best of our knowledge, only a small number of them were evaluated based on empirically-
listed plagiarism attacks. Most of them were only evaluated in black-box manner, taking a
bunch of source codes as a dataset and evaluating the system only based on its general
accuracy toward given dataset. Thus, it might be difficult to exploit specific characteristics of
given system. The researchers could not declare which attacks are effective and ineffective
toward their system. By incorporating empirically-listed plagiarism attacks, the researchers
could define the strengths and weaknesses of their proposed system in more comprehensive
manner. Moreover, they could also avoid biased result caused by imbalance distribution of
given attacks since they could control such distribution explicitly.

In addition to providing a comprehensive metric for evaluation, empirically-listed
plagiarism attacks could also aid the researchers to design more effective plagiarism
detection system. They could adjust the proposed system for prioritizing popular attacks
rather than the rare ones. Moreover, they could also ignore several rare attacks if detecting
such attacks take a considerable amount of time.

To the best of our knowledge, previous research enlisted source code plagiarism attacks
empirically in an explicit manner (Ahmadzadeh et al., 2011; Prechelt et al., 2002; Karnalim,
2016). Firstly, Ahmadzadeh et al. (2011) enlisted plagiarism attacks occurred on 20 Java
source codes and used it to check the tendency of plagiarism attacks among novice students.
Their work generated 11 attacks which are varied from indentation to object-oriented
modification. Secondly, Prechelt et al. (2002) enlisted plagiarism attacks occurred on 647 Java
source code pairs in the evaluation of JPlag. Such mechanism generated 21 attacks which are
varied from whitespace to data structure modification. Finally, Karnalim (2016) enlisted
plagiarism attacks occurred on 378 Java source codes in the evaluation of low-level
plagiarism detection approach. His work generated 50 attacks which are varied from
verbatim copy to loosely-coupled instruction rearrangement.

Unfortunately, among these works, there are no contributions which are focused on Python
programming language, even though such language is quite popular nowadays for learning
Introductory Programming (Guo, 2013). Thus, this paper proposes an empirical study of
Python plagiarism attacks found on Introductory Programming course. In addition to such
main goal, we also aim to find out the trend of such attacks from two perspectives: Faidhi &
Robinson’s taxonomy (Faidhi & Robinson, 1987) and student experience. The result of this
study is expected to become either an evaluation baseline or a prior knowledge for
developing Python-targeted plagiarism detection system.

Methodology

Generally, our methodology aims to enlist Python plagiarism attacks and find out the trend
of such attacks toward Faidhi & Robinson’s taxonomy (Faidhi & Robinson, 1987) and
student experience. Such methodology consists of four phases that should be executed in
sequential manner. These phases are raw data collection, plagiarism-suspected pair filtering,
manual listing of plagiarism attacks, and trend analysis.

First of all, raw data collection aims to collect all student’s source codes that will be used as
our dataset. In our case, since we aim to enlist Python plagiarism attacks found on
Introductory programming, our dataset is collected from an undergraduate class of
Introductory Programming course which was held in the odd semester of 2016/2017

20 O. Karnalim

academic year. Such class was conducted in 16 weeks where each week consists of two
sessions: Theory and Laboratory session.

The syllabus of both theory and laboratory sessions can be seen on Table 1. According to
materials listed on given table, this course covers 2 built-in functions, which are print and
input, and 10 syntaxes, which are variable assignment, if-then-else, while-do, for-traversal,
function declaration, function invocation, static array assignment, static array access, static matrix
assignment, and static matrix access. The last four syntaxes, which are about array and matrix,
are taught by assuming that the size of both array and matrix is static instead of dynamic.
Array and matrix are represented as the multiplication of [None] variable instead of a
standard Python list. Such modification was applied to accustom the students with default
array and matrix representation on Java and C#, the programming languages that they will
learn on the 4th semester. However, it is important to note that we do not restrict our
students to only use such functions and syntaxes. They could use other instructions which
they have learned outside the class if necessary.

For each laboratory session except the 1st, 7th, and 14th session, laboratory assignment is
represented as five sub-assignments that should be completed in 150 minutes. Two of them
are related to technical knowledge (e.g. implementing a syntax learned from theory session
directly) while the others are related to logical problem solving. For each sub-assignment,
we took all student’s source codes and treated them as a part of our dataset, resulting 1,428
Python source codes taken from 55 sub-assignments (11 laboratory assignments with 5 sub-
assignments each).

Table 1. Course syllabus

Week Course material of theory session Course material of laboratory session

1 Introduction and Data Type Adaptation to Programming Environment

2 Input and Output Output

3 Branching Input

4 The 1st Quiz Branching

5 Traversal Traversal

6 Nested Traversal Nested Traversal

7 The 2nd Quiz Laboratory Mid-Test

8 Mid-Test -

9 Void Function Void Function

10 Return Function Return Function

11 Array Array

12 The 3rd Quiz Function and Array

13 Matrix Matrix

14 Searching and Sorting Searching and Sorting

15 The 4th Quiz Laboratory Final Test

16 Final Test -

Python source code plagiarism attacks on introductory programming course assignment 21

Second, plagiarism-suspected pair filtering aims to filter possible source code pairs which
one of its member is suspected to be plagiarized from another member. In our case, for each
sub-assignment, 10 source code pairs will be randomly taken as a part of our plagiarism-
suspected pairs. We prefer to select 10 pairs randomly rather than only taking Top-10 pairs
with the highest similarity degree since some plagiarism attacks might not be found on top
pairs due to its significant modification. However, to ensure that selected pairs still generate
high similarity degree, we only took pairs that generate similarity degree higher than
average threshold, a threshold that is resulted by averaging the highest and lowest similarity
degree from all source code pairs on that sub-assignment. It is important to note that such
threshold is determined locally per sub-assignment instead of being determined globally for
all sub-assignments since the number of possible modifications per sub-assignment might be
varied. For instance, the hello world assignment should enable less modification than other
complex assignment such as sorting. By determining average similarity locally per sub-
assignment, the threshold can be adjusted automatically toward the number of possible
modification, resulting fewer false positives and/or negatives for each sub-assignment.

In term of determining similarity degree between two source codes, both source codes will
be converted to token sequences and compared to each other using a string similarity
algorithm. On the one hand, converting source code to token sequences is conducted using
ANTLR (Parr, 2014) with Python 3 grammar provided by ANTLR repository
(https://github.com/antlr/grammars-v4/tree/master/python3). It is important to note
that, in this phase, source code comments are excluded from generated token sequences so
that our measurement is guaranteed to only consider semantic-preserving tokens. On the
other hand, comparing string sequences is conducted based on an adaptation of JPlag
similarity measurement (Prechelt et al, 2002) which detail can be seen in (1). sim(A,B) refers
to similarity degree between two compared token sequences namely A and B; coverage(A,B)
refers to the total size of shared token subsequences that is generated based on Rabin-Karp
Greedy-String-Tiling (RKGST) algorithm (Wise, 1993) with 2 as its minimum match length;
and |A| & |B| refer to the length of token sequence A and B respectively. Such
measurement assures that each modification will affect the similarity result.

sim (A,B) = 2 * coverage (A,B) / (|A|+|B|) (1)

We have acknowledged that not all source code pairs which share high similarity degree are
generated from plagiarism acts. Several pairs might be generated due to coincidence,
especially when given assignment provides only one logical fashion to solve it. However,
since filtering true-positive plagiarism pairs on these pairs might be difficult based on the
fact that no students would want to confess their illegal behavior, we have no option but to
rely on similarity degree to filter plagiarism pairs. In order to avoid misleading terminology,
we refer such pairs as plagiarism-suspected pairs instead of plagiarism pairs. In other
words, we do not guarantee that all pairs used in this work are generated from plagiarism
acts. Some of them might be generated based on coincidence.

In short, the second phase, which is plagiarism-suspected pair filtering, generates 550 source
code pairs from our dataset. It is collected from 55 sub-assignments that cover 11
assignments where, for each sub-assignment, 10 source code pairs which similarity degree is
higher than local average similarity degree are taken.

Third, manual listing of plagiarism attacks aims to enlist all plagiarism attacks found on
filtered dataset. In our case, such listing is conducted by the first author who has 7 years’
experience for detecting source code plagiarism on Introductory Programming course.
However, to mitigate the number of observed pairs, our work only considers source code
pairs which both members correctly solve given sub-assignments. Such mechanism is

https://github.com/antlr/grammars-v4/tree/master/python3

22 O. Karnalim

applied based on the fact that, according to our informal observation in our course, most
students tended to share their code to others if, and only if, they had completed writing the
code for solving a sub-assignment. They seldom shared half-completed code to their friends
since they were required to complete it first to get higher score. As a result, our work
excludes 150 pairs and only considers 400 pairs for manual observation.

In order to simplify our work, we will enlist plagiarism attacks based on the list defined by
Karnalim’s work (Karnalim, 2016). His work is preferred to other works based on following
reasons: 1) Plagiarism attacks enlisted by his work are more comprehensive than other
works. It can be seen from the number of generated plagiarism attacks where his work
outperforms the others; 2) His work is focused only on attacks found on Introductory
Programming course, which is quite similar with our goal; and 3) To the best of our
knowledge, his work is the only work which explicitly mapped listed plagiarism attacks
based on Faidhi & Robinson’s taxonomy (Faidhi & Robinson, 1987). We do believe that the
relation between such taxonomy and listed plagiarism attacks might be beneficial for further
evaluation about source code plagiarism detection system.

Plagiarism attacks defined by Karnalim (2016) are then modified and adapted based on the
manual observation of given dataset. While observing each source code pair, each
plagiarism attack will be either mapped to existing attack list defined by Karnalim or
considered as a new attack type. Such mechanism is conducted based on the fact that the
nature of programming language targeted by Karnalim’s work (i.e. Java) is quite different
with ours (i.e. Python).

Finally, trend analysis aims to find out the trends of collected attacks based on two
perspectives: Faidhi & Robinson’s taxonomy and student knowledge. On the one hand, to
find out the trend toward Faidhi & Robinson’s taxonomy, such attacks are mapped to six
levels of Faidhi & Robinson’s taxonomy and, according to attack occurrences per level, the
relation between attack occurrences and increasing plagiarism level is analyzed. On the
other hand, to find out the trend toward student experience, the relation between attack
variance per week and student experience is analyzed.

By and large, it can be roughly stated that our methodology will generate three findings
which are empirically-listed plagiarism attacks, the trend of collected attacks toward Faidhi
& Robinson’s taxonomy, and the trend of collected attacks toward student experience. The
first finding will be generated on the 3rd phase, which is the manual listing of plagiarism
attacks, whereas the other two will be generated on the last phase, which is the trend
analysis.

Results and discussion

Empirically-listed plagiarism attacks

According to our proposed methodology, 35 distinctive plagiarism attacks are extracted
from 400 plagiarism-suspected pairs on the third phase, which is manual listing of
plagiarism attacks. The detail and occurrences of these attacks can be seen on Table 2 where
each attack is assigned with a unique ID that starts with P. It is important to note that all
enlisted attacks work in two-way reversible fashion. For example, if an attack is focused on
incorporating a dummy method, then removing dummy method is also considered as that
attack. As seen in Table 2, there are five attacks which occur frequently on our dataset. These
attacks are P01, P03, P17, P27, and P28.

Python source code plagiarism attacks on introductory programming course assignment 23

Table 2. Empirically-listed plagiarism attacks

ID Attack type
Number of
occurrences

(pairs)

P01 Modify comment and whitespace 400

P02 Modify source code delimiter 45

P03 Modify identifier name 322

P04 Assign different default value to a variable 40

P05 Merge two or more variable assignments 11

P06 Change the variable scope 28

P07 Reuse declared variables for other processes 5

P08 Incorporate dummy variables 27

P09 Rearrange function declaration 17

P10 Encapsulate the content of main function as a particular function and call
it on main function as a replacement of its content

18

P11 Encapsulate a particular task as a void function with the use of global
variables

14

P12 Encapsulate a particular task as a void function without the use of global
variables

7

P13 Encapsulate a particular task as a non-void function without the use of
global variables

17

P14 Utilize API-based instruction instead of regular instruction 1

P15 Break down API-based instruction to several more-specific API-based
instructions

10

P16 Exchange API-based instruction with other API-based instruction that
yield similar functionality for particular circumstance

12

P17 Incorporate useless arguments on API function call or syntax form 75

P18 Replace constant value with variable or vice versa 9

P19 Replace constant with operation which yields similar result 6

P20 Change operand order in arithmetic or boolean operation 18

P21 Merge several operations without the use of temporary variables 31

P22 Replace increment/decrement instruction with their respective binary
operator form

4

P23 Replace combined assignment with their respective binary operator form 18

P24 Replace data type with other data type that yields similar functionality
for particular circumstance

4

P25 Incorporate useless casting 2

P26 Change loop type 8

P27 Incorporate dummy instructions without changing the decision logic 66

P28 Rearrange loosely-coupled instructions on similar scope 59

P29 Replace a number of repetitive instructions with a loop 9

P30 Change loop boundary 34

P31 Reverse loop direction from ascending to descending 3

P32 Rearrange branching statements based on its condition validation
sequence

16

P33 Replace logical expression with other expression that yields similar
meaning

27

P34 Incorporate logical expression that can be replaced with boolean constant 7

P35 Change incorporated algorithm with another algorithm which shares
similar goal

2

24 O. Karnalim

First, P01, which is focused on modifying comment and whitespace, generates the highest
number of occurrences on our dataset. It occurs on all 400 cases where most of them are
represented as modifying comment. Such finding is natural since modifying comment is the
easiest attack to be conducted. It does not affect the program flow yet it changes given
program layout significantly. Indentation modification (e.g. replacing each tabulation with 3
spaces), on the contrary, only occurs on a small number of cases. We would argue that such
few number of occurrences is caused by Python’s strict indentation mechanism. Python
forces the programmers to follow typical indentation style while writing the code. Therefore,
source code indentation on Python source code cannot be modified freely as in other
programming languages such as Java. Even though it is still possible to do such thing, it will
take a considerable effort since all indentation tokens on given code should be replaced.

Second, P03, which is focused on modifying identifier name, generates the 2nd highest
number of occurrences on our dataset. It occurs on 322 of 400 cases where most of them are
represented as variable renaming. Such finding is natural since variable can be found on
almost all sub-assignments, resulting it as the most prominent identifier type for this attack.
The modification itself is varied from changing character capitalization (e.g. maxsize to
Maxsize) to replacing the whole identifier name with other different-yet-similar term (e.g.
node to vertex).

Third, P17, which is focused on incorporating useless arguments on API function call or
syntax form, generates the 3rd highest number of occurrences on our dataset. It occurs on 75
of 400 cases even though such attack seldom occurs on other programming languages such
as Java and C++. When discovered further, such unusual phenomenon is caused by the fact
that Python overrides most of its built-in functions and syntaxes for programmer
convenience, resulting numerous alternative forms for each function or syntax. Therefore,
since such alternatives only differ in term of the number of parameters, useless arguments
could be used easily as a plagiarism attack. In our case, print and input are the most
frequently targeted built-in functions for this attack whereas for-traversal is the most
frequently targeted syntax. The students frequently changed how they use these functions
and syntax since they had been taught various forms of such functions and syntax on theory
session. For instance, most students tended to discard some parameters on for-traversal since
they had been taught how for-traversal works when represented with complete and
incomplete parameters.

Fourth, P27, which is focused on incorporating dummy instructions, generates the 4th
highest number of occurrences on our dataset. It occurs on 66 of 400 cases where such
attacks could be roughly classified into two categories: incorporating either non-mandatory
return keyword at the end of function declaration or useless print function invocation on the
program body. The high number of occurrences of both attacks is natural since, in our
course, both instructions, at some extent, do not affect student grades. We let the students to
use return keyword if they want to and let them to freely put numerous print function
invocations as long as the output would be quite similar with our desired output.

Last, P28, which is focused on rearranging loosely-coupled instructions, generates the 5th
highest number of occurrences on our dataset. It occurs on 59 of 400 cases where most of
them are only about re-arranging the position of one-line instruction such as variable
assignment. Only a few of them re-arrange the order of numerous instructions at once.

In addition to findings found on Top-5 attacks, we also enlist several minor findings which
have been discovered during the observation. These findings are: 1) In Python, it is possible
to implement P02 attack by replacing string literal delimiter from single-quotation to
double-quotation marks and vice versa, both marks are valid for declaring Python strings; 2)

Python source code plagiarism attacks on introductory programming course assignment 25

Python enables multiple assignments, which is also a possible implementation of P05 attack;
3) Python does not have do-while syntax. Thus, do-while behavior on Python will be
represented with while syntax, which might be varied in terms of implementation. Such
variation could be used as P29 attack; and 4) The variance of incorporated attacks, at some
extent, rely on the course syllabus. For example, P35 attack, which is not listed by Karnalim
(2016), occurs in our dataset since, at that time, the students were required to implement an
arbitrary sorting process while they had been taught three kinds of sorting algorithm on
theory session.

The trend of empirically-listed plagiarism attacks toward Faidhi & Robinson’s
taxonomy

According to Faidhi & Robinson (1987), plagiarism attacks can be classified into six levels
where, for each increasing level, the difficulty for doing such attack increases. The detail of
such levels can be seen on Table 3. These levels start with level 1, which is about comment,
whitespace, and delimiter modification, as the easiest level, to level 6, which is about logic
change, as the hardest one. Among these levels, level 6 is the only level which is not affected
by Python syntactical features. Such finding is natural since level 6 is about logic change, an
attack category which is not directly related to programming language syntax.

Since higher attack level, at some extent, represents higher difficulty on such taxonomy
(Faidhi & Robinson, 1987), the attack difficulty should be inversely proportional to the
number of students who can do such attack. In other words, plagiarism attack frequency at a
particular level should be fewer than plagiarism attack frequency at its lower level. In this
section, we want to revalidate whether such trend is also applied to Python plagiarism
attacks from Introductory Programming course. However, before analyzing such trend,
plagiarism attacks listed on Table 2 will be mapped to Faidhi & Robinson’s taxonomy. The
result of such mapping can be seen on Table 4. Among these levels, level 5 is assigned with
the most number of attacks, which is 15 of 35 attacks, while level 2 is assigned with the
fewest number of attack, which is 1 of 35 attacks.

Table 3. Faidhi & Robinson’s taxonomy of plagiarism attacks

Level Attack Category

1 Comment, whitespace, and delimiter modification

2 Identifier renaming + level 1 attacks

3 Component declaration relocation + level 2 attacks

4 Inlining and outlining function + level 3 attacks

5 Program statement replacement + level 4 attacks

6 Logic change + level 5 attacks

Table 4. Mapped plagiarism attacks according to Faidhi & Robinson’s taxonomy

Level Included Plagiarism Attacks

1 P01 and P02

2 P03

3 P04 – P09

4 P10 – P13

5 P14 – P28

6 P29 – P35

26 O. Karnalim

Figure 1. Total number of plagiarism attack occurrences per level

After all attacks have been mapped, total number of occurrences on each level is then
summed and analyzed. However, since the number of occurrences in Table 2 do not provide
sufficient information about how many attacks overlap to each other, we assume that all
attacks on a particular level always overlap to each other. Therefore, for each level, its total
number of occurrences are generated by selecting the highest number of occurrences from
all attacks on given level. Total number of occurrences for each level can be seen on Figure 1.
Horizontal axis represents Faidhi & Robinson’s levels whereas vertical axis represents total
number of occurrences. As seen in Figure 1, the number of plagiarism attack occurrences at a
particular level is not always fewer than the number of plagiarism attack occurrences at its
lower level. For instance, the number of level 5 attack occurrences is not fewer than the
number of level 4 attack occurrences. When discovered further, there are several aspects
which cause such phenomena.

Firstly, in Python, variable declaration cannot be written explicitly and it is always
conducted implicitly when a variable is assigned with a value. Thus, it might mitigate the
number of level 3 attack occurrences, as it is known that variable declaration relocation is a
part of level 3 attacks. Secondly, since function material was introduced at the 9th session,
level 4 attacks, which are about inlining and outlining method, might never occur at the
beginning of the course, reducing the number of such attack occurrences. Thirdly, according
to our informal in-class observation, most students tended to avoid using function since
such mechanism made their code more complex. Consequently, such aspect might also
reduce the number of level 4 attack occurrences. Finally, since Python overrides numerous
built-in functions and syntaxes for programmer convenience, level 5 attacks, which are
focused on program statement replacement, can be conducted easily, increasing the number
of such attack occurrences.

To sum up, since the number of plagiarism attack occurrences at a particular level is not
always fewer than the number of plagiarism attack occurrences at its lower level, it can be
roughly stated that, in our case study, attack difficulty is not always proportional to
increasing plagiarism level. We would argue that such finding is natural due to the nature of
Python programming language, course syllabus, and student preferences.

Python source code plagiarism attacks on introductory programming course assignment 27

Figure 2. Number of distinct attacks per week

The trend of empirically-listed plagiarism attacks toward student experience

This section aims to revalidate whether the number of attack variance is proportional to the
student experience or not. Based on the fact that student experience is enlarged as the
number of lecture week increases, such relation can be measured based on the relation
between the number of distinct attacks per week and the number of passed laboratory
weeks. If the number of distinct attacks per week is increased as the number of passed
laboratory weeks increases, then it can be stated that the number of attack variance is
proportional to the student experience. The number of distinct attacks per laboratory week
resulted from our dataset can be seen in Figure 2. Horizontal axis represents laboratory
weeks whereas vertical axis represents the number of distinct attacks.

As seen in Figure 3, even though, in general, the number of distinct attacks is increased as
the number of passed laboratory weeks increases, it is still reduced at certain points. To be
specific, it is reduced at the 5th, 10th, 11th, and 13th week, which are about traversal, return
function, array, and matrix material respectively. When discovered further through informal
survey, such phenomenon occurs since, at that time, most students felt such materials were
difficult to learn. They could not understand the materials comprehensively, resulting a
discouragement to put various attacks on their code. Among given laboratory weeks, the 9th
week, which is about void function, generates the most number of attack variance. Such
finding is natural since, in such week, we encouraged the students to freely design the
functions on their source codes. Thus, they would easily incorporate numerous obvious
attacks without being worried to be accused as plagiarists.

By and large, when viewed in general, it is true that the number of attack variance is
proportional to the student experience. However, since such trend is affected by student
understanding and assignment restrictions, it is possible to see such trend fluctuates at
certain points.

Threats to Validity

In general, there are two threats to validity which should be considered. On the one hand, it
is important to note that our dataset does not include only true positive plagiarism cases due

28 O. Karnalim

to limited human resource and time. However, we try to mitigate this threat by filtering
plagiarism-suspected pairs through human-like approach for detecting plagiarism. We only
took source code pairs which share high similarity degree in our dataset. On the other hand,
due to limited observed cases, our result cannot be generalized to represent all possible
Python plagiarism attacks for Introductory Programming course. However, we try to
mitigate this threat by observing source codes collected for the whole semester and taking
random source code pairs to avoid biased result. Yet, there is still a possibility that several
attacks were not observed.

Conclusions

In this paper, we have enlisted Python plagiarism attacks on Introductory Programming
course. Based on our 400 plagiarism-suspected pairs, there are 35 distinct plagiarism attacks,
where Top-5 attacks are modifying comment and whitespace, modifying identifier name,
incorporating useless arguments on API function call or syntax form, incorporating dummy
instructions, and rearranging loosely-coupled instructions. Beside such finding, two
additional findings can also be deducted which are: 1) Plagiarism attack difficulty is not
always proportional to increasing plagiarism level due to the nature of Python
programming language, course syllabus, and student preferences and 2) The number of
distinct plagiarism attacks per week is proportional to the student experience even though it
is still affected by student understanding and assignment restrictions.

For future work, these findings will be used as a baseline for developing a Python-targeted
plagiarism detection system. We intend to propose a plagiarism detection system that is
sensitive to popular Python plagiarism attacks in Introductory Programming environment.
Moreover, we also intend to conduct similar empirical study on Data Structure course,
which incorporates standard object-oriented techniques. Such finding then will be merged
with this work to provide more-comprehensive study about Python plagiarism attacks in CS
education.

References

Ahmadzadeh, M., Mahmoudabadi, E., & Khodadadi, F. (2011). Pattern of plagiarism in novice students'
generated programs: An experimental approach. Journal of Information Technology Education: Innovations in
Practice, 10, 195-205.

Al-Khanjari, Z.A., Fiadhi, J.A., Al-Hinai, R.A., & Kutti, N.S. (2010). PlagDetect: a Java programming plagiarism
detection tool. ACM Inroads, 1(4), 66-71).

Bandara, U., & Wijayarathna, G. (2011). A machine learning based tool for source code plagiarism detection.
International Journal of Machine Learning and Computing, 1(4), 337-343.

Chilowicz, M., Duris, E., & Roussel, G. (2009). Syntax tree fingerprinting for source code similarity detection.
Proceedings of IEEE 17th International Conference on Program Comprehension (pp. 243-247). Vancouver: IEEE.

Cosma, G., & Joy, M. (2008). Towards a definition of source-code plagiarism. IEEE Transactions on Education,
51(2), 195-200.

Cosma, G., & Joy, M. (2012). Evaluating the performance of LSA for source-code plagiarism detection. Informatica,
36, 409-424.

Djuric, Z., & Gasevic, D. (2012). A source code similarity system for plagiarism detection. The Computer Journal,
55, 70-86.

Engels, S., Lakshmanan, V., & Craig, M. (2007). Plagiarism detection using feature-based neural networks.
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education (pp. 34-38). New York: ACM.

Faidhi, J. A., & Robinson, S. K. (1987). An empirical approach for detecting program similarity and plagiarism
within a university programming environment. Computers & Education, 11(1), 11-19.

Guo, P. J. (2013). Online python tutor: Embeddable Web-based program visualization for CS education.
Proceedings of the 44th SIGCSE Technical Symposium on Computer Science Education (pp. 579-584). New York:
ACM.

Python source code plagiarism attacks on introductory programming course assignment 29

Jadalla, A., & Elnagar, A. (2008). PDE4Java: Plagiarism detection engine for Java source code: A clustering
approach. International Journal of Business Intelligence and Data Mining, 3(2), 121-135.

Ji, J.-H., Woo, G., & Cho, H.-G. (2008). A plagiarism detection technique for Java program using bytecode
analysis. Proceedings of the third International Conference on Convergence and Hybrid Information Technology (pp.
1092-1098). Busan: IEEE.

Juričić, V. (2011). Detecting source code similarity using low-level languages. Proceedings of the 33rd International
Conference on Information Technology Interfaces (pp. 597-602). Dubrovnik: IEEE.

Juricic, V., Juric, T., & Tkalec, M. (2011). Performance evaluation of plagiarism detection method based on the
intermediate language. In C. Billenness, A. Hemera, V. Mateljan, M. Banek Zorica, H. Stančić & S. Seljan
(Eds.), Proceedings of the 3rd International Conference ‘’The Future of Information Sciences: INFuture2011-Information
Sciences and e-Society‘’ (pp. 355-363). Zagreb, Croatia: University of Zagreb.

Karnalim, O. (2016). Detecting Source code plagiarism on introductory programming course assignments using a
bytecode approach. Proceedings of the 10th International Conference on Information & Communication Technology
and Systems (ICTS) (pp. 63-68). Surabaya: IEEE.

Kustanto, C., & Liem, I. (2009). Automatic source code plagiarism detection. Proceedings of the 10th ACIS
International Conference on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing (pp. 481-486). Daegu: IEEE.

Lim, J.-S., Ji, J.-H., Cho, H.-G., & Woo, G. (2011). Plagiarism detection among source codes using adaptive local
alignment of keywords. Proceedings of the 5th International Conference on Ubiquitous Information Management and
Communication (pp. 24-34). Seoul: ACM.

Ohno, A., & Murao, H. (2011). A two-step in-class source code plagiarism detection method utilizing improved
CM algorithm and SIM. International Journal of Innovative Computing, Information, and Control, 7(8), 4729-4739.

Parker, A., & Hamblen, J. O. (1989). Computer algorithms for plagiarism detection. IEEE Transactions on
Education, 32(2), 94-99.

Parr, T. (2014). ANTLR. Retrieved 12 July 2015, from http://www.antlr.org.
Prechelt, L., Malpohl, G., & Philippsen, M. (2002). Finding plagiarisms among a set of programs with JPlag.

Journal of Universal Computer Science, 8(11), 1016-1038.
Rabbani, F. S., & Karnalim, O. (2017). Detecting source code plagiarism on .NET programming languages using

low-level representation and adaptive local alignment. Journal of Information and Organizational Sciences, 41(1),
105-123.

Ramirez-de-la-Cruz, A., Ramirez-de-la-Rosa, G., Sanchez-Sanchez, C., Jimenez-Salazar, H., Rodriguez-Lucatero,
C., & Luna-Ramirez, W. A. (2015). High level features for detecting source code plagiarism across
programming languages. Proceedings of the Cross-Language Detection of SOurce COde Re-use Conference (pp. 10-
14). Gandhinagar, India.

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local algorithms for document fingerprinting.
Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 76-85). San Diego: ACM.

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular
Biology, 147, 195-197.

Sraka, D., & Kaucic, B. (2009). Source code plagiarism. Proceedings of the 31st International Conference on Information
Technology Interfaces, ITI’ 09 (pp. 461-466). Cavtat, Croatia: IEEE.

Wise, M. J. (1993). Running rabin-karp matching and greedy string tiling. Basser Departement of Computer Science,
Sydney University.

Wise, M. J. (1996). YAP3: Improved detection of similarities in computer programs and other texts. ACM SIGCSE
Bulletin, 28(1), 130-134.

To cite this article: Karnalim O. (2017). Python source code plagiarism attacks on introductory programming course
assignment. Themes in Science and Technology Education, 10(1), 17-29.

URL: http://earthlab.uoi.gr/theste

http://www.antlr.org/

